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Cumulant expansions and the spin-boson problem

David R. Reichman, Frank L. H. Brown, and Peter Neu
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 27 August 1996!

The dynamics of the dissipative two-level system at zero temperature is studied using three different cumu-
lant expansion techniques. The relative merits and drawbacks of each technique are discussed. It is found that
the noncrossing cumulant expansion technique appears to embody the virtues of the more standard cumulant
methods.@S1063-651X~97!15302-8#

PACS number~s!: 05.30.2d, 05.40.1j, 72.15.Qm
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I. INTRODUCTION

The standard spin-boson problem, described by
Hamiltonian@1,2#

H5
D

2
sx1(

j
F pj

2

2mj
1
1

2
mjv j

2S xj2 cj
mjv j

2szD 2G ~1!

has served as a paradigm for the description of dissipa
effects in condensed phases. Some experimental realiza
of such a Hamiltonian include, e.g., the detection of mac
scopic quantum coherence in superconducting quantum
terference devices@3,4#, tunneling effects in metallic and in
sulating glasses@5#, electron transfer reactions@6#, and the
diffusion of light interstitial particles in metals@7#. In each
situation, the physical realization of the parameters in
Hamiltonian~1! is different. For instance, in metallic glass
at low temperatures the electron-hole pairs at the Fermi le
constitute the bosonic bath, while for insulating glasses, t
neling effects are damped by localized and delocalized vib
tional modes. Thus, the Hamiltonian~1! embodies a wealth
of physical situations and has been studied in great de
~see, for instance,@1,2# and references quoted therein,
more recently@8–10#!.

In order to study the dynamics of the two-level syste
coupled to a harmonic bath as in Eq.~1!, we need a method
of ‘‘tracing out’’ the bath or spin degrees of freedom. Th
bath degrees of freedom can be specified by the spe
density function,

J~v!5
p

2(j
cj
2

mjv j
d~v2v j !, ~2!

which gives the bath density of states weighted by the squ
of the coupling strength between the two-level system
the bath. In most studies of the spin-boson problem,
spectral density takes the Ohmic form@1,2#

J~v!52pavexp~2v/vc!, ~3!

wherea is a measure of the coupling strength, andvc is a
frequency cutoff for the bath. We note that in many cas
such as the coupling of a spin degree of freedom to a th
dimensional phonon bath in the deformation potential
proximation, the spectral density~3! is not realistic, and mus
involve higher powers ofv.
551063-651X/97/55~3!/2328~10!/$10.00
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The usual approach to finding reduced equations for
spin variables of interest involves the use of the functio
integral formulation of quantum dynamics@1,2#. Formally
exact equations may be found for the variables

P~ t !5^sz~ t !& ~4!

and

C~ t !5 1
2 ^$sz~0!,sz~ t !%&b , ~5!

where^•••&b refers to an average with respect to the cano
cal ensemble of Eq.~1!. The quantityP(t) describes the
population difference in the localized spin states of t
Hamiltonian~1!, given that the particle is initially localized
in one well and in thermal equilibrium with the bath. It is th
variable of interest in certain physical situations, for e
ample, the electron transfer problem@6#. The quantity
C(t), the symmetrized equilibrium correlation function o
the tunneling coordinate, is related to the structure factor
neutron scattering off the tunneling particle, and is of gr
significance in various problems, including the antiferroma
netic Kondo problem@11#. ForC(t) the long-time behavior
at zero temperature is known from the generalized Sh
relation, which predicts algebraic decayC(t)}t22 @2,12#.
For P(t) the situation is less clear, however, some stud
have predicted exponential decay ast→` @2,13#. Despite the
importance ofC(t), we will focus on the variableP(t) in the
following.

The formal path integral expression forP(t) is extremely
cumbersome, and a suitable approximation must be im
mented to obtain useful information. The so-called ‘‘noni
teracting blip approximation,’’ or NIBA@1,2#, is the most
commonly used approximation. In this schemeP(t) is en-
tirely determined byC(t), i.e.,C(t)[P(t). The NIBA may
be obtained from the exact expression forP(t) by invoking a
series of physically based approximations. For very low te
peratures, these approximations often break down, unlesa
is very small and only short times are considered. At z
temperature, the NIBA is not justified in the antiferroma
netic Kondo regime12,a,1. The NIBA also incorrectly
predicts asymptotically algebraic, rather than exponen
decay for the variableP(t). Lastly, NIBA incorrectly pre-
dicts that at zero temperature,C(t);t22(12a).

Despite these flaws, the NIBA is useful for obtainin
quantitative results forP(t) for high temperatures, when th
2328 © 1997 The American Physical Society
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55 2329CUMULANT EXPANSIONS AND THE SPIN-BOSON PROBLEM
tunneling dynamics is incoherent, and in predicting the qu
tative behavior ofP(t) for low temperatures. For instance,
zero temperature, the NIBA correctly predicts a crosso
from damped oscillations to incoherent decay for the va
ableP(t) at the pointa5 1

2.
As shown by Aslangulet al. @14#, the NIBA may be ob-

tained by first applying a small polaron transformation to
Hamiltonian~1!, followed by a second order application o
the usual Nakijima-Zwanzig projection operator technique
has been known for some time that this projection techniq
which leads to a master equation of the convolution form
an order by order resummation of a particular type of cum
lants known as ‘‘chronologically ordered’’ cumulants@16–
20#. The use of the ‘‘chronological ordering prescription
or COP, when truncated at second order thus leads to
NIBA.

Interestingly, Aslangulet al. @15# earlier applied a convo
lutionless master equation technique to the study of the z
temperature spin-boson problem. This type of master eq
tion, which can be derived by using a different type of pr
jection operator, involves the summation of a different ty
of cumulant, known as ‘‘partially~time-! ordered’’ cumu-
lants @21,17–20#. This method was probably abandoned f
two reasons. First, it incorrectly describes incoherent re
ation for P(t) for all values ofa. Secondly, it cannot be
obtained in a simple manner from the exact path integ
expression. The second objection is irrelevant, since it is
possible that such an approximate resummation describe
exact behavior ofP(t) well. The first flaw, however, is quite
serious. Despite this, the expression obtained from the ‘‘p
tial ordering prescription,’’ or POP, which naturally resum
to an exponential form,may be expected to give a bette
description ofP(t) in the incoherent region. In fact, for va
ues ofa greater than12, but not too large, this method de
scribes weakly stretched exponential relaxation, which m
closely approximates the true exponential decay ofP(t) than
does the algebraic behavior predicted by NIBA. Furth
more, as will be demonstrated in this paper, recent sim
tions of Egger and Mak@22# show that the POP method mo
accurately captures the deep decay ofP(t) at zero tempera-
ture for a. 1

2 than does the COP~NIBA ! method,even be-
fore the algebraic behavior of the NIBA is manifested.

It is well known that by choosing a particular ordering
a truncated cumulant expansion, we are implicitly assum
different statistical properties for the relevant bath operat
The first purpose of this paper is to specify these statist
properties for the case of the spin-boson problem at z
temperature. Using this ‘‘stochastic’’ type intuition, we the
discuss various cumulant ordering schemes and their as
ated descriptions of the behavior ofP(t) atT50. This paper
is organized as follows: In Sec. II we first present a deri
tion of the exact expression forP(t) that allows for clear
specification of the statistical properties of the bath. For t
purpose, orthogonally to the conventional approach, we
integrate out the spin degrees of freedom exactly. In Sec.
we briefly discuss the COP and POP methods. We then
to a recently introduced cumulant method, the ‘‘noncro
ing’’ cumulants@23–25#. Lastly, in Sec. IV, we compare th
methods to exact simulation results.
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II. MOMENT EXPANSION

We begin with an explicit expression forP(t) through
fourth order inD. We could, if we wished, obtain these term
from the exact path integral expression forP(t), however,
we believe that the method used in this section most cle
shows the connection to the stochastic methods upon w
the cumulant expansions are based. In effect, our met
offers another route to the formal expression of Refs.@1,2#.

We begin with the Hamiltonian~1! in the form

H5H81
D

2
sx , ~6!

H85(
k

vkbk
†bk2sz(

k
gk~bk

†1bk!1(
k

gk
2

vk
. ~7!

The quantity we wish to calculate isP(t), which is defined
as

P~ t !5^sz~ t !&5Z21Tr@exp~ iHt !sz~0!exp~2 iHt !

3p1exp~2bH8!p1#, ~8!

where

Z5Tr@p1exp~2bH8!p1#,

sz5uL&^Lu2uR&^Ru,

sx5uL&^Ru1uR&^Lu,

p15 1
2 ~11sz!,

andb is the inverse temperature. Hence,D is the tunneling
frequency between the left~uL&! and right ~uR&! localized
states of a double-well potential. We now diagonalize Eq.~6!
in the spin manifoldwith the use of a transformation em
ployed by Shore and Sander@26,27# in their study of the
self-trapping of an exciton coupled to phonons, namely,

U5
1

A2
S 1 21

f f D , ~9!

where

f5~21!(kbk
†bk5expS ip(

k
bk
†bkD .

The operatorf is seen to be the parity operator for the ba
modes. In the transformed picture, we can express

P~ t !52Z̃21Tr@exp~ iH̃ t !sx~0!exp~2 iH̃ t !

3p̃1exp~2bH̃8!p̃1#, ~10!

where

H̃5
D

2
fsz1H̃8, ~11!

H̃85(
k

vkbk
†bk1(

k
gk~bk

†1bk!1(
k

gk
2

vk
, ~12!

p̃5 1
2 ~12sx!, ~13!
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and Z̃ is now defined with respect toH̃8 and p̃1.
We now perform the trace over the spin degrees of fr

dom in Eq.~10!, leaving

P~ t !5Re@G~ t !#, ~14!

where

G~ t !5Trb@exp~ iH1t !exp~2 iH2t !exp~2bH̃8!#/Trb

3@exp~2bH̃8!#, ~15!

with

H656
D

2
f1H̃8.

This trace over the bath degrees of freedom is most ea
performed in the small polaron representation, defined by
transformation

U5exp~j!, ~16!

j5(
k

gk
vk

~bk2bk
†!. ~17!

In this picture, we may expressG(t) as

K exp→S i E
0

t

dth~t! D exp←S i E
0

t

dth~t! D L
B

, ~18!

where

h~ t !5
D

2
exp@2j~ t !#fexp@j~ t !#, ~19!

and

j~ t !5(
k

gk
vk

~bke
2 ivkt2bk

†eivkt!. ~20!

The averaging~denoted by^•••&B) is over the canonica
ensemble of harmonic oscillators, @i.e.,
rB5exp(2b(kvkbk

†bk)/Trbexp(2b(kvkbk
†bk)#, and exp→

(exp←) denotes a time ordered exponential with latest time
the right~left!. From this point on, all averaging will be with
respect to this ensemble, and we will drop the subscripB.
Since the spin degree of freedom has been removed,
method allows us to focus on the bath operators that aris
the expansion ofP(t). Using the following properties of the
parity operator,

fexp@j~ t !#5exp@2j~ t !#f

and

f251,
-

ily
e

o

ur
in

we can show, through fourth order inD, the moment expan-
sion forP(t),

P~ t !511E
0

t

dt1E
0

t1
dt2m2~ t1t2!

1E
0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4m4~ t1 ,t2 ,t3 ,t4!1•••,

~21!

where the momentsmi equal

m2~ t1 ,t2!52D2Rê B2~ t1!B1~ t2!&, ~22!

m4~ t1 ,t2 ,t3 ,t4!5
D4

4
Re@^B2~ t1!B1~ t2!B2~ t3!B1~ t4!&

1^B2~ t2!B1~ t1!B2~ t3!B1~ t4!&

1^B2~ t3!B1~ t1!B2~ t2!B1~ t4!&

1^B2~ t4!B1~ t1!B2~ t2!B1~ t3!&#,

~23!

and

B6~ t !5exp@62j~ t !#. ~24!

Note thatm2n2150. In this paper, we shall only use the fir
two nonvanishing moments, although it is a simple matte
execute the expansion to an arbitrary order. From~21!–~23!
we conclude thatP(t) is entirely determined by the statist
cal properties of the bath operatorsB6(t) with respect to the
canonical state of the bath. Note that the operatorsB6 al-
ways appear in pairs. In order to specify the statistics obe
by the operatorsB6 , we now calculate the second and four
moment of theB6’s. It is a simple matter to show that

^B2~ t1!B1~ t2!&5exp@2 iQ1~ t12t2!2Q2~ t12t2!#,
~25!

where

Q1~ t12t2!54(
k

S gkvk
D 2sin@vk~ t12t2!#, ~26!

and

Q2~ t12t2!54(
k

S gkvk
D 2$12cos@vk~ t12t2!#%coth~bvk/2!.

~27!

Furthermore, by using the relationeA1B5eAeBe21/2[A,B] and

^ekb†e2k* b&5e2uku2 for @A,B#, k beingc numbers, one can
also show that
^B2~ t1!B1~ t2!B2~ t3!B1~ t4!&5
^B2~ t1!B1~ t2!&^B2~ t3!B1~ t4!&^B2~ t1!B1~ t4!&^B2~ t2!B1~ t3!&

^B2~ t1!B1~ t3!&^B2~ t2!B1~ t4!&
. ~28!
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55 2331CUMULANT EXPANSIONS AND THE SPIN-BOSON PROBLEM
This property can be extended to an arbitrary number
B6 pairs. This gives a type of ‘‘Wick’’ theorem for the op
eratorsB6 , and demonstrates the underlying reason w
only the functionsQ1 andQ2 appear in the exact path inte
gral @see Eqs.~4!–~17! to ~4!–~22! in Ref. @1##. It can now be
explicitly checked that the expression~21! is identical to the
exact path integral expression, at least through the fo
moment. Note that the property~28! is different from the
statistical properties held by commonly used stochastic p
cesses such as Gaussian, two-state-jump, or Gaussian
dom matrix processes. We will return to this point in the ne
section.

The moment expansion itself is not a very useful sche
for describing dynamics, because an arbitrary truncation
the expansion leads to secular terms that grow with time.
next resort to schemes that provide partial~approximate! re-
summations of the moment expansion to all orders. S
schemes are the cumulant expansions that will be introdu
in the next section.

III. CUMULANT EXPANSIONS

We now discuss the various ordering prescriptions t
allow for partial resummation of the expansion~21!. Each
ordering method leads to a unique type of master equa
@24#. We note that, when carried out to infinite order, all
the ordering techniques give the same~exact! result. When
truncated at a finite order, however, the results are differ
In simple stochastic situations, when the temperature of
bath is infinite and the generator for time evolution~the
Liouville operator! commutes with itself for all times, i.e.
@L(t),L(t8)#50, the use of a particular truncated cumula
expansion implies a knowledge of the stochastic proper
of the bath functions. In simple cases, truncation of the
mulant expansion in the ‘‘correct’’ ordering prescription c
lead toexactresults that may be obtained in the ‘‘incorrec
ordering prescription only at infinite order. In the quantu
case described by the Hamiltonian~1!, where@L(t),L(t8)#
Þ0, truncation of a cumulant expansion at finite order in a
ordering prescription will never lead to exact results due
the noncommutivity of the Liouvillian at different time
@28–30#. It is precisely this noncommutivity that leads to th
variety of time orderings of the operatorsB6 in the expres-
sion~23! for m4. Despite this fact, the statistical properties
the bath operators still dictate the choice of ordering p
scription that provides the most rapid convergence of
cumulant series~if such convergence exists! @31#.

We begin by discussing the chronological ordering p
scription, or COP. In this prescription, a master equation
the form ~see, for instance,@20,17–19,24#!

dP~ t !

dt
5E

0

t

KCOP~ t,t!P~t!dt ~29!

is obtained. This equation may be expressed in the form

dP~ t !

dt
5 (

n52

` E
0

t

dt1•••E
0

tn22
dtn21

3gn~ t,t1 , . . . ,tn21!P~tn21!. ~30!

The COP cumulantsg are obtained from the moments by
recusion relation@24#. In the present case this yields
f

y

th
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g2n2150,

g2~ t,t1!5m2~ t,t1!,

g4~ t,t1 ,t2 ,t3!5m4~ t,t1 ,t2 ,t3!

2m2~ t,t1!m2~t2 ,t3!, . . . . ~31!

For the simple case where the stochastic Liouvillian co
mutes with itself for all times, all of the COP cumulantsgn
vanish for n>3 if the stochastic bath functions have th
two-state-jump behavior@20#

^B~ t1!B~ t2!B~ t3!B~ t4!•••&5^B~ t1!B~ t2!&

3^B~ t3!B~ t4!•••&,

~32!

for t1.t2.t3.t4.•••, whereB(t) is the stochastic bath
function responsible for system dissipation. If these b
functions have different statistics, it may not be a good
proximation to truncate the series at low orders.

Returning now to the quantum case of interest in t
paper, we find at lowest order, as shown by Aslangulet al.
@14#, the NIBA equation forP(t):

dP~ t !

dt
5E

0

t

m2~ t2t!P~t!dt, ~33!

where, atT50, using the Ohmic constraint~3!, along with
Eq. ~22!, we may express

m2~ t2t!52D2Re
1

@11 ivc~ t2t!#2a . ~34!

As shown by Grabert and Weiss@32#, the solution to Eq.~33!
with the kernel~34! can be given for alla,1 ~in the limit
D/vc→0) by the Mittag-Leffler function@33#,

PNIBA~y!5E2~12a!~2y2~12a!!, ~35!

wherey5Defft and

Deff5D@cos~pa!G~122a!#1/2~12a!S D

vc
D a/~12a!

.

~36!

This solution shows damped oscillations fora, 1
2, and inco-

herent decay fora> 1
2. This behavior has been qualitative

confirmed by Monte Carlo simulation@22#. As mentioned in
the Introduction, the NIBA cannot give the correct asym
totic decay of P(t) @yielding the algebraic decayP(t)
}t22(12a) rather than exponential decay#, and is unable to
account for the depth of the decay in the regiona> 1

2 even
before the incorrect algebraic behavior sets in. The NIBA
however, known to work quite well for short times and we
coupling strengths. The analysis given in the last section p
vides an explanation for this fact. For ‘‘short’’ times an
‘‘small’’ values of a the functionm2(t) is a rather broad,
weakly decaying function of time. When this is the case,
statistical property~28! of the operatorsB6 is approximately
of the two-state-jump form~32! as far as the integrations
over the cumulantsgn>3 are concerned. This approximate
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equivalence holds in astochasticsense, in that all of the fou
point correlation functions inm4 @see Eq.~23!# may be ap-
proximated bym2(t1 ,t2)m2(t3 ,t4). For such times and cou
pling strengths, the NIBA will be essentially exact, as
COP cumulants forn>3 will vanish when integrated. We
shall not provide precise meaning to the terms ‘‘short’’
‘‘small,’’ although their meaning should be clear in the co
text of the present discussion, and could be quantified w
out undue labor@in fact ‘‘short’’ and ‘‘small’’ will be
coupled in the sense that the effective time scale of osc
tion or decay, (Deff)

21, depends ona#. Note that the statis-
tical property~28! trivially gives two-state-jump behavior fo
a50, which leads to the correct behaviorP(t)5cos(Dt).
While this is obvious, other cumulant techniques~such as
those discussed below! do not embody this type of statistic
for a50, and cannot give the correct, freely oscillating s
lution for zero coupling strength upon truncation at seco
order. The statement~often given in the literature@34#! that
NIBA works for weak coupling because it is a perturbati
scheme is thus not strictly correct.

The ~somewhat heuristically! demonstrated fact that th
property ~28! can resemble two-state-jump behavior und
certain circumstances leads one to believe that extending
COP scheme to fourth order would not be useful, since
property is reflected in the vanishing of all COP cumula
higher than the second. Extending the COP method to fo
orderdoes not give a method for computing ‘‘interblip’’ in
teractionsin the language of Ref.@1#.

We now turn to the partial ordering prescription, or PO
At second order, this method was applied by Aslangulet al.
@15# to the spin-boson problem atT50. The POP maste
equation has a convolutionless@20,24# form
s
t b
or
le

a
e
he

fo
l

-

a-

-
d

r
he
is
s
th

.

dP~ t !

dt
5S E

0

t

KPOP~t!dt DP~ t !. ~37!

KPOP(t) may be obtained from the moments

KPOP~ t !5 (
n51

` E
0

t

dt1E
0

t1
dt2•••E

0

tn21
dtn

3un11~ t,t1 , . . . ,tn!, ~38!

where

u2n2150,

u2~ t,t1!5m2~ t,t1!,

u4~ t,t1 ,t2 ,t3!5m4~ t,t1 ,t2 ,t3!2m2~ t,t1!m2~t2 ,t3!

2m2~ t,t2!m2~t1 ,t3!

2m2~ t,t3!m2~t1 ,t2!, . . . . ~39!

The POP resummation is exact at second order for
simple case of a classical Gaussian stochastic process
note that the statistical property~28! appears to be very dif-
ferent from the standard Wick theorem for Gaussian p
cesses. We may still expect that the POP method is be
suited for the incoherent regimea> 1

2 for the following rea-
sons. First, the POP technique resums to an expone
form, which is expected to better capture the long time
havior ofP(t), which is expected to be exponential. In ge
eral, the POP method sums~infinitely! more terms than the
COP method does. For example, expansion of the sec
order truncation in the COP gives to fourth order
P~ t !511E
0

t

dt1E
0

t1
dt2m2~ t1 ,t2!1E

0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4m2~ t1 ,t2!m2~ t3 ,t4!1•••,

whereas the POP gives

P~ t !511E
0

t

dt1E
0

t1
dt2m2~ t1 ,t2!1E

0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4m2~ t1 ,t2!m2~ t3 ,t4!1m2~ t1 ,t3!m2~ t2 ,t4!

1m2~ t1 ,t4!m2~ t2 ,t3!1••• .
ld
tial

at
Clearly, the extra terms do not ensure a more accurate re
For example, for weak coupling strengths, the POP mus
carried out to infinite order to obtain coherent behavi
However, in the incoherent regime, the effective time sca
defined by Eq.~36! is very long, while the decay of the
functionm2(t) is ‘‘slow’’ ~algebraic!. In this case, we may
expect that we must include terms such
m2(t1 ,t4)m2(t2 ,t3) that extend over large portions of th
integration region. As we will show in the next section, t
POP method seems to capture the behavior ofP(t) better
than the COP method in the incoherent regime, even be
the full asymptotic behavior is displayed.

At second order@KPOP(t,t)5m2(t2t)# the POP equa-
tion ~38! may be solved@15#:
ult.
e
.
,

s

re

P~ t !5expF D2

4vc
2

1

~a21/2!~12a!

3S 12
cos„2~12a!tan21vct…

~11vc
2t2!a21 D G . ~40!

Note that Eq.~40! describes astretched exponentialrather
than exponential decay. For values ofa that are not too
much larger than12, however, the POP expression shou
give a better representation of the asymptotic exponen
decay of P(t) than the COP~NIBA ! expression, which
yields algebraic decay asymptotically.

We have now given some motivation for the belief th



-

of
lo
ry
n
o

u-

th

e

m
e
lm
r
et
o
’’

-

or
c
n
th

ll

th-
ed in
th-
nt
ch
pin-
the
iffi-
at
tion
for
on
re-
em-
ied
this

ble

ase,
m-

-

e-
g
ter

e,
ady
vior,

ak
er-

that
il-
n
nd
,
f

55 2333CUMULANT EXPANSIONS AND THE SPIN-BOSON PROBLEM
the COP method~at lowest order! should give a better de
scription ofP(t) in the regiona, 1

2 while the POP method
should be better in the incoherent regiona> 1

2. We now ask
whether there is a summation method that is a ‘‘hybrid’’
the two methods, in the sense that it can incorporate at
order features of the COP and POP methods. In the theo
stochastic processes, such a technique has recently bee
veloped@23–25#. This method is based on the summation
‘‘noncrossing’’ ~NC! cumulants~for a precise definition see
Refs. @23–25#!. For simple stochastic situations, if the co
pling is not too strong, the NC technique~including terms up
to fourth order! has been shown to interpolate between
two-state-jump behavior and the Gaussian behavior@24#.

The NC description leads to anonlinearequation of mo-
tion for P(t) @24#, which at second order, may be express
as

dP~ t !

dt
5M ~ t !, ~41!

where

M ~ t !5E
0

t

dt1z2~ t2t1!P~ t2t1!P~ t1!. ~42!

To fourth order the master equation forP(t) in the NC
scheme reads

dP~ t !

dt
5M ~ t !1E

0

t

dt1E
0

t1
dt2E

0

t2
dt3z4~ t,t1 ,t2 ,t3!

3P~ t2t1!P~ t12t2!P~ t22t3!P~ t3!. ~43!

As in the previous two case, the NC cumulantsz may be
obtained from the moments by a recursion relation@23,25#.
In the present case this yields up to fourth order

z2n2150,

z2~ t,t1!5m2~ t,t1!,

z4~ t,t1 ,t2 ,t3!5m4~ t,t1 ,t2 ,t3!2m2~ t,t1!m2~ t2 ,t3!

2m2~ t,t3!m2~ t1 ,t2!, . . . . ~44!

It is clear that in appearance, the NC cumulants are a ‘‘co
promise’’ between the COP and POP cumulants. We not
passing two interesting facts. First, in the stochastic rea
the NC ordering prescription truncated at second orde
exact for the case of a stochastic bath modeled by symm
(N3N) Gaussian random matrices for the commutator
h(t)’s. In this case, the ‘‘crossing contraction
m2(t,t2)m2(t1 ,t3) vanishes by means of a 1/N argument for
N→`. This leads naturally to the equation~42! and its sys-
tematic generalization~43! through the NC cumulants. Equa
tion ~42! has first been derived by Kraichnan@36–39# in the
fields of turbulence and fluid dynamics. Our motivation f
the application of this method isnot based on a stochasti
type of reasoning, but on the fact that in simple situatio
this ordering prescription may combine the benefits of
COP and POP methods.
w
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Before concluding this section, we would like to apply a
three ordering prescriptions to the caseT50, a5 1

2. Here, it
is known that the ‘‘exact’’~in the sense specified in Ref.@1#!
result forP(t) is

P~ t !5expF2
p

2
vcS D

vc
D 2G ~45!

in the limit D/vc→0. Note that in this limit, the second
moment becomesd correlated (t>0)

m2~ t !→
pD2

2vc
d~ t !.

Using the fact thatP(0)51, it is clear thatall three ordering
prescriptions give the same resultgiven by Eq.~45! at sec-
ond order. Hence, the valuea5 1

2 corresponds to thewhite
noiselimit of the bath operatorsB6(t).

IV. RESULTS AND CONCLUSIONS

Before comparing the results of the three ordering me
ods, we make some comments on the methods discuss
Sec. III. We have shown how three different cumulant me
ods give rise to different master equations with differe
properties. We have tried to physically motivate when ea
approach should have success when applied to the s
boson problem at zero temperature. Note that in general,
discussion of convergence of each cumulant series is a d
cult task. This task is made more difficult by the fact that,
zero temperature, the algebraic decays of the bath correla
functions leave us with no clearly defined relaxation time
the bath. This means that we will rely almost exclusively
physical considerations and comparison with accepted
sults to determine the success or failure of the methods
ployed. The case of finite temperature, which can be stud
by the same methods employed here, is often easier in
respect. If an exponential correlation timetb can be assigned
to the decaying bath correlation functions, then it is possi
to consider a systematic expansion inDefftb provided that
this dimensionless parameter is small. When this is the c
the POP provides the most facile way of systematically su
ming terms in the parameterDefftb @21#. In case of Ohmic
dissipation and finite temperatureT, the characteristic corre
lation time of theB6(t) is given bytb;(2paT)21 @1#. This
point of view provides an explanation for the familiar stat
ment that the NIBA works well in the incoherent tunnelin
regimeDefftb!1. In a stochastic language, this parame
region corresponds to thenarrowing or Markov limit of the
B6’s. Similarly to the white noise limit mentioned abov
one finds that all three cumulants schemes work well alre
at second order and provide essentially the same beha
P(t)'exp@2Deff

2 (T)tbt# with Deff(T)}T
a @1#.

Since we expect the NIBA to be accurate for very we
coupling strengths, we first turn to the case of weak to int
mediate coupling strength,a50.3. For coupling strengths in
this range, simulations at low temperatures have shown
the NIBA is qualitatively correct in predicting damped osc
lations, but may fail in predicting the damping strength. A
example of this is given by the simulations of Makarov a
Makri @13#, which show that for intermediate coupling
NIBA may fail by slightly underestimating the number o
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FIG. 1. Zero temperature plot ofP(y)
(y5Defft) for a50.3 andvc /D56. The dotted
line is the second order POP result, the dash
line is the second order noncrossing cumulant
sult, the dash-dotted line is the NIBA~second
order COP! result, and the solid line is the fourth
order noncrossing cumulant result.
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oscillations inP(t). We note, however, that these simul
tions were carried out for values ofD/vc that are not very
small. In Fig. 1, we plot the NIBA~second order COP! so-
lution for P(t) against the solutions obtained from seco
and fourth order truncations of the noncrossing cumul
method, and the second order POP. Note that, as expe
the second order POP solution forP(t) fails to produce any
oscillations. We expect that fora, 1

2 the POP will always be
inaccurate at low orders. The second order noncrossing
mulant solution forP(t), obtained from the Kraichnan-typ
equation~41!–~42! is similar to the NIBA solution, although
the oscillation inP(t) is much weaker. The fourth orde
noncrossing cumulant solution gives a first oscillation tha
very similar in magnitude to the NIBA solution, however,
describes one extra weak remnant of an oscillation. This
havior is very similar to the behavior displayed in the ex
t
ed,

u-

s

e-
t

simulations of Makarov and Makri@13#. Although this ex-
ample represents only one value ofa, similar results may be
obtained for all moderately strong values ofa up to a5 1

2.
Thus, it appears that the noncrossing scheme works we
incorporating~and perhaps improving! the qualities of the
COP method for moderate values ofa whena, 1

2.
We now turn to the relaxation ofP(t) in the incoherent

regimea> 1
2. Here, the beautiful path integral simulations

Egger and Mak@22# provide a means of comparing the c
mulant expansion methods with exact results. In this reg
we expect the POP to be most successful, while the NI
~second order COP! is expected to be worse. Based on exp
rience with simple stochastic situations, we hope, as in
coherent portion of the coupling space, that the noncross
scheme can capture the essence of the POP in this regim
Fig. 2, we show the decay ofP(t) calculated by different
re-
ng
he
FIG. 2. Zero temperature plot ofP(y)
(y5Defft) for a50.6 andvc /D56. The dash-
dotted line is the NIBA~second order COP! re-
sult, the dashed line is the second order POP
sult, the solid line is the second order noncrossi
cumulant result, and the open circles are t
simulation result of Egger and Mak@22#.
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FIG. 3. Zero temperature plot ofP(y)
(y5Defft) for a50.7 andvc /D56. The dash-
dotted line is the NIBA~second order COP! re-
sult, the dotted line is the second order POP
sult, the solid line is the second order noncrossi
cumulant result, and the open circles are t
simulation result of Egger and Mak@22#.
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ordering prescriptions fora50.6. It must be noted that th
simulations were carried out for long times, but not lo
enough to show the asymptotic algebraic decay of the NI
~second order COP! solution ofP(t), or the asymptotic ex-
ponential decay of the exact solution. Due to this fact, it
somewhat difficult to see that the POP solution is to be p
ferred over the NIBA solution in the incoherent regime.
support of this claim we note two facts. First, the POP so
tion better manifests the deep decay of the exact result in
nonasymptotic regime. Secondly, near the pointa51/2, the
POP solution will better approximate the exponential de
of P(t) in the asymptotic regime than the NIBA, which pr
dictsP(t);t22(12a). The simulations of Egger and Mak en
just before this regime is reached. As we had hoped,
a50.6, the second order noncrossing technique is ne
identical to the POP. Figure 3 shows the results fora50.7.
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-
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Again, the POP seems to perform the best, while the sec
order noncrossing scheme overestimates the decay. As in
case of weaker coupling, we see if truncation after fou
order in the noncrossing cumulants can properly correct
second order result. This test is shown in Fig. 4. While
results appear to show that the noncrossing scheme is
verging to a POP-like description ofP(t), we again must
exercise caution due to the lack of further concrete evide
for this belief. For such a large value ofa, it is quite possible
that the cumulant methods break down.

One interesting property displayed in Figs. 2 and 3 is
close agreement between the POP description ofP(t) and
the exact simulation ofP(t) for moderately long times. In
Fig. 3 this behavior occurs fory>2.5, while in Fig. 3, the
agreement is less pronounced, but appears to occur
y>1.6 ~note that there is some scattering in the simulat
e-
re-
n-
he
FIG. 4. Zero temperature plot ofP(y)
(y5Defft) for a50.7 andvc /D56. The dotted
line is the fourth order noncrossing cumulant r
sult, the dashed line is the second order POP
sult, and the solid line is the second order no
crossing cumulant result. Note the change in t
x axis.
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FIG. 5. Relative magnitude of second an
fourth cumulant effects in the POP fora50.7.

The dashed line showsu*0
ydy8*0

y8dy9K2
POP(y9)u

and the solid line shows

u*0
ydy8*0

y8dy9K4
POP(y9)u. KPOP(t) is defined in

Eq. ~38!.
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data fora50.7 neary52 that slightly obscures the appare
agreement!. In order to investigate this, we have comput

*0
ydy8*0

y8dy9K2
POP(y9) and *0

ydy8*0
y8dy9K4

POP(y9) where
Kn
POP(t) is the nth term in the expansion~38!. If the inte-

grated second order POP cumulant is of order one for a g
time interval, while all other POP cumulants are small wh
integrated over the appropriate time domain, then we exp
the truncation at second order to be a good approximat
While we cannot study all the POP cumulants, we have s
ied the second and the fourth. In Fig. 5, we compare
properties of the second and fourth POP cumulants
a50.7. Fory51.4 toy52 ~the boundary of the simulation
results of Egger and Mak@22#!, we see that the contributio
from the second POP cumulant is at least ten times gre
than the contribution from the fourth cumulant. This strong
suggests that the agreement of the second order POP m
with the exact simulations is no coincidence. In fact, t
agreement between Eq.~41! and the simulation occurs pre
cisely in the interval where the second order cumulant do
nates the fourth order cumulant. Since the slopes of the
curves suggest that this behavior continues for some ti
we feel there is strong evidence for the somewhat remark
conclusion that, for significant intermediate times, the de
of P(t) is quantitatively described by a stretched expon
tial. For longer times, the decay is most likely purely exp
nential.

We now summarize the results presented in this pa
We first carried out a derivation of the moment expansion
the variableP(t) in the spin-boson problem. We then us
er
n
n
ct
n.
d-
e
r

ter

hod

i-
o
e,
le
y
-
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r.
r

this derivation to discuss the ‘‘statistical’’ properties of th
relevant bath operators. Using the moment expansion,
first discussed the chronological and partial ordering p
scriptions that involve different types of cumulants. We d
cussed the merits and drawbacks of each method. In an e
to combine the merits of the COP and the POP, we app
the noncrossing scheme. Specializing to the case of z
temperature, we tested each method, including fourth o
terms when necessary. Our results show that the noncros
scheme is a promising candidate for combining the virtues
the COP and POP, especially for intermediate values ofa on
either side of the coherent-incoherent transition value
a5 1

2. We note that more work should be done to test
validity of this claim. Lastly, we have provided evidence
support the belief that the stretched exponential behavior
scribed by second order truncation of the POP in the in
herent portion of coupling space may infact be very accur
for intermediate times.
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